Efficient computation of patterned covariance matrix mixed models in quantitative segregation analysis.

نویسنده

  • N Schork
چکیده

The use of patterned covariance matrices in forming pedigree-based mixed models for quantitative traits is discussed. It is suggested that patterned covariance matrix models provide intuitive, theoretically appealing, and flexible genetic modeling devices for pedigree data. It is suggested further that the very great computational burden assumed in the implementation of covariance matrix-dependent mixed models can be overcome through the use of recent architectural breakthroughs in computing machinery. A brief and nontechnical overview of these architectures is offered, as are numerical and timing studies on various aspects of their use in evaluating mixed models. As the kinds of computers discussed in this paper are becoming more prevalent and easier to access and use, it is emphasized that it behooves geneticists to consider their use to combat needless approximation and time constraints necessitated by smaller, scalar computation oriented, machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended pedigree patterned covariance matrix mixed models for quantitative phenotype analysis.

Overt computational constraints in the formation of mixed models for the analysis of large extended-pedigree quantitative trait data which allow one to reliably characterize and partition sources of variation resulting from a variety sources have proven difficult to overcome. The present paper suggests that by combining a restricted patterned covariance matrix approach to modeling and partition...

متن کامل

189-29: Mixed Model Influence Diagnostics

Linear models for uncorrelated data have well established measures to gauge the influence of one or more observations on the analysis. For such models, closed-form update expressions allow efficient computations without refitting the model. When similar notions of statistical influence are applied to mixed models, things are more complicated. Removing data points affects fixed effects and covar...

متن کامل

Mixed Model Influence Diagnostics

Linear models for uncorrelated data have well established measures to gauge the influence of one or more observations on the analysis. For such models, closed-form update expressions allow efficient computations without refitting the model. When similar notions of statistical influence are applied to mixed models, things are more complicated. Removing data points affects fixed effects and covar...

متن کامل

An efficient technique for Bayesian modeling of family data using the BUGS software

Linear mixed models have become a popular tool to analyze continuous data from family-based designs by using random effects that model the correlation of subjects from the same family. However, mixed models for family data are challenging to implement with the BUGS (Bayesian inference Using Gibbs Sampling) software because of the high-dimensional covariance matrix of the random effects. This pa...

متن کامل

A Bayesian Approach for Assessing Heterogeneity in Generalized Linear Models

Generalized linear mixed models (GLMMs) are used routinely for analyzing clustered data arising in a broad variety of applications. In Bayesian analyses, inverse Wishart or inverse gamma priors are almost always used for the covariance of the random effects, for computational convenience and to enforce the positive definite constraint on the covariance matrix. In this article, we propose a new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetic epidemiology

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 1991